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Abstract—Selecting an appropriate distributed processing
framework can be difficult for developers building large-scale
machine learning applications. That is because all these tools
provide various kinds of parallelism patterns and suggest dif-
ferent communication strategies to synchronize local and global
model data distributed among parallel nodes. There is no clear
answer to determine which strategy might be suitable depending
on the data and application. Taking Latent Dirichlet Allocation
(LDA) as an example, contemporary implementations often
choose asynchronous communication methods to synchronize the
model data. However, our observations show that the asyn-
chronous communication still has very high overhead and the
characteristics of the LDA training datasets encourage us to
use optimized synchronous collective communication methods
instead. The results show that with data parallelism only, our
”lda-lgs” implementation can be (%) faster compared to Yahoo!
LDA. With model parallelism, our ”’lda-rtt” implementation has
similar speed compared with Petuum LDA on a uni-gram model
with 1 million words and 10k topics but (%) faster on a bi-gram
model with 20 million words and 500 topics.

I. INTRODUCTION

One challenge of parallel machine learning applications is
that while training data can be split into parallel workers, the
model data that all local computations depend on is growing
progressively and generates significant synchronization over-
head. Currently two types of parallelism are used to solve this
problem (see Fig. la):

Data Parallelism The global model is distributed on a set of
servers or on existing parallel workers. Each worker samples
on a local model and updates it through the synchronization
between local models and the global model.

Model Parallelism In addition to using data parallelism,
the global model data is split between parallel workers and
rotated during the sampling.

In LDA [1], the model synchronization is important because
a faster communication method not only reduces the resulting
overhead, but also speeds up the model convergence rate,
shrinks the model size, and shortens the computation time in
later iterations. Though both synchronous and asynchronous
methods (see Fig. 1b) can cause the model to converge without
affecting the correctness of the algorithm, it is unclear which
strategy performs better for LDA applications. Asynchronous
communication is popular because it avoids the overhead of
global waiting between parallel workers and that of local wait-
ing between computation threads and communication threads.
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Fig. 1. (a) Data Parallelism vs. Model Parallelism and (b) Asynchronous
Communication vs. Synchronous Communication in LDA
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In data parallelism, asynchronous communication allows local
computation to continue without waiting for the completion
of updating the global model from all parallel workers per
iteration. In model parallelism, though model rotation is syn-
chronous, per word sampling and sending can still overlap
without waiting on each worker, demonstrating asynchronous
communication.

However, after studying the characteristics of LDA data,
we have identified that the counts of each word in the training
documents fall under the power-law distribution. As a result,
when data parallelism is used, many words in the global
model will display on all the workers’ local models, and
this generates “one-to-all” communication patterns during the
synchronization. Similarly, in model parallelism, as the size
of the global model data expands, each worker needs to
handle more data transference. These observations inspired
us to apply routing optimized synchronous communication
operations to improve the the LDA model update speed.

Our synchronous communication methods utilize the model
data distribution characteristics and routing optimization in
conjunction. Furthermore, we overlapped the computation and
communication steps to reduce the overhead of the global/local
waiting. These ideas are implemented in Harp [2], a collective
communication library on Hadoop. Harp has already integrated
several collective communication patterns from different par-
allel processing frameworks in a unified abstraction. However,
all the current patterns cannot abstract either the local/global
model synchronization in data parallelism or the model ro-
tation in model parallelism. As such, we abstracted three
other communication patterns called “syncLocalWithGlobal”,



“syncGlobalWithLocal”, and “rotateGlobal” in which our new
ideas are embedded. The new patterns are very general-
izable so that they can be applied not only to LDA ap-
plications but also to many other machine learning appli-
cations. We implemented one LDA application which uses
“syncLocalWithGlobal” and ‘“‘syncGlobalWithLocal” to per-
form data parallelism and another which uses “rotateGlobal” to
perform model parallelism. We compared our implementations
with other implementations based on asynchronous communi-
cation methods, such as Yahoo! LDA [3] and Petuum LDA
[4], on several datasets. The results show that optimized syn-
chronous communication methods can reduce communication
overhead and improve model convergence speed.

The following sections describe: the cost model of LDA
algorithm (Section 2), the synchronous communication meth-
ods (Section 3), the implementation of Harp-LDA (Section 4),
the performance results of our implementation (Section 5), the
related work on parallel LDA (Section 6), and our conclusions
(Section 7).

II. CosT MODEL
A. LDA model

Latent Dirichlet Allocation (LDA) is a generative probabilis-
tic data modeling technique. Training data are abstracted as a
document collection, where each document is a bag of words.
LDA models the data by introducing latent topics, which try
to capture the underlining semantic connections and structures
inside the data. In LDA model, a document is a mixture of
latent topics and each topic is a multinomial distribution over
words. In the generative process, for document j, we first draw
a topic distribution 6; from a Dirichlet with parameter «. Then
for each word ¢ in this document, we draw a topic z;; = k
from the multinomial distribution with parameter 6;. Finally,
word z;; is drawn from a multinomial ¢y |x=,;, Which also
derives from a Dirichlet with parameter 5. Here, the words
x;; are observed variables, 0, ¢, z are latent variables, and «
and [ are hyper parameters.

The purpose of LDA inference is to compute the posterior
distribution of the latent variables given the observed vari-
ables. There are many approximate inference algorithms. In
a practice on large data, Collapsed Gibbs Sampling (CGS)
[5] displays high scalability. Collapse is a procedure used to
integrate out #,¢ and sample only the latent variables z. Gibbs
Sampling is one kind of Markov chain Monte Carlo algorithm
for inference. There are three phases: initialize, burn-in and
stationary.

In initialize, each word is initialized by a random topic
denoted as z;;. Afterwards it begins to reassign topics to each
word w;; according to the conditional probability of z;;, which
then calls sampling.
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Here, superscript —¢5 means that the corresponding word is
excluded in the counts. V' is vocabulary size. N, is the count
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of word w assigned to topic k, and Ny; is the count of topic k
assigned in document j, which are sufficient statistics for the
latent variable 6 and ¢. The latent variables can be represented
by three matrices Z;;, N, and N;, which are model data.
Intuitively, by equation(1), with higher probability a word will
be assigned to the topic that has been assigned to it’s co-
occurring words. So, sampling by the latest model data of
co-occurring words is critical for convergence, that is why
synchronization is so important in parallel LDA trainer.

Hyper parameters a and [ are also called concentration
parameters, which control the topic density in the final model.
The larger the « and (3, the more topics can be drawn into a
document and assigned to a word, and the more non-zero cells
in each row of the N, and NN;; matrices. Although a useful
LDA trainer often has the feature of o and (3 optimization
dynamically tuned to fit the training data, in this paper, we
skip such a feature and use symmetric « and S both fixed to
a common used value 0.01 to exclude the complex effects on
performance caused by their dynamics.

Latent variables will gradually converge in the process of
iterative sampling. This is the phase where burn-in occurs and
finally reaches the stationary state. From that point, we can
draw samples from the sampling process and use them to
calculate the posterior distribution.

To evaluate the quality of the final model learned by
LDA, held-out testsets are often used, taking likelihood or
perplexity as the accuracy metrics. In this paper, we just use
the model data likelihood on the training dataset to monitor
the convergence of LDA trainer, which is consistent with the
held-out test set results in our experiments, only much faster.

Sampling on z;; in CGS is a strictly sequential process. AD-
LDA[6] is the seminal work allowing us to relax this sequential
sampling requirement. It assumes that the dependence between
one topic assignment z;; and another z;; is weak in the
case that different words in different documents are sampled
concurrently. In AD-LDA, training data are partitioned into
n subsets, with n Gibbs Samplers running parallel on each
collection, and each sampler synchronizes its model data
with others at certain time points. This parallel version still
produces a useful model. This established the foundation of
large-scale parallel implementations of CGS of LDA trainers
on large-scale data in practice.

B. Performance Factors

Many factors are related to the performance of a LDA
trainer.

Sampling Algorithm Computation complexity of a sam-
pling algorithm basically determines the overall performance.
Although there is a O(1) sampling algorithm, LightLDA [7],
proposed in the literature, we still focus on SparseLDA [8],
which is an optimized CGS sampling algorithm mostly used
in the state-of-the-art LDA trainers, in order to make a broader



comparison. SparseLDA splits the equation (1) into three parts:
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The denominator is a constant when sampling on one word.
The third part of the numerator is also a constant; the second
part is non-zero only when Ny is non-zero, and the first part is
non-zero only when N, is non-zero. In naive CGS sampling,
the conditional probability will compute K times, while in
SparseLDA, the computation can be decreased to non-zero
items number in N,,;, and Ny;, which are much smaller than
K on average.

We found that in practice, the sampling performance is
more memory bounded than computation bounded, for the
computation is very simple and memory access to two large
matrices is not by its nature cache friendly. Furthermore,
CGS has a feature of exchangeability that permits the order
of word sampling to be changed. In practice, sampling can
take the order by row or column on the document-word
matrix. Equation(2) is the form optimized for row order, called
sample-by-doc. In this case, IN; can be cached for the words
in the same row, and the computation complexity in terms of
amotized random memory access time is O(} ;. L(Nyi # 0)).
Symmetrically, sample-by-word will have the complexity of
O(S ) (N # 0)).

Parallelism Strategy Data partition on the training data,
which is a document-word matrix, can be done either in the
rows or the columns. If data are partitioned by rows, each
subset data has its local z, Ny;, N, model data and only N,
needs to be synchronized with others. In general applications,
the row number is much larger than the column number, so
partition by rows will get smaller model data size. Here we
only call the shared word-topic matrix as model data.

There are many possible communication strategies which
control how to do model data synchronization among parallel
units. Modern cluster has two levels of parallel units; one is
distributed processes on an inter-nodes level and the other is
multi-threading inside the node level. In this paper, we focus
on the inter-nodes level by exploring the differences among
the communication strategies.

Cluster configurations include nodes number N and net-
working bandwidth B, memory size M for each node, and
thread number T for each node. As manycore technology
brings more powerful machines to bear for complicated
computation applications, large-scale machine learning appli-
cations will definitely benefit as a result. Relatively small
numbers of N with a large number of T can reach high scale
parallelism, which is more like a traditional HPC cluster than
a cloud cluster.

Data Property Training data can be characterized by the
total numbers of tokens, denoted as W, and number of
documents, denoted as D. The model data N, is a V x K
matrix and Ny; is a D * K matrix, where V' is the vocabulary
size and K is the topic number.

LDA is an iterative algorithm. It keeps sampling on the
training data and updating (synchronizing) the model data until
it converges. In the computation part, one iteration is one pass
on sampling the training data. In the synchronization part, one
iteration is one pass to synchronize all the model data. As we
described above, both parts are highly related to the model data
size, not in terms of the matrix dimension but the non-zero
items count.

C. Model Data

Model Size Power law distribution is a general phe-
nomenon. It has another equal form for text data as Zipf’s law,
where the frequency of a word is proportional to the reciprocal
of its rank.

freq(i)=Cxi™* 3)

here, 7 is word rank, and A\ is near 1.
There are a total of V' unique words in the training data.
We then have:

W = Z freq(i)
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If A is 1, this is the partial sum of harmonic series which have
logarithmic growth, where v is the EulerMascheroni constant
~ 0.57721.

Model data, V * K, is a very large but sparse matrix. In a
general setting, V' is 1M, K is 1K, while for big models it can
even reach 1M*1M. But the non-zero cell count of the matrix
is the true model size, denoted as S, S << V % K.

In the initialization phase of CGS, word-topic count matrix
is initialized by random topic assignment for each work. So the
word i will get maz (K, freq(i)) non-zero cells. if freq(J) =
K, J=C/K, we get:
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The true model size S;,;; is logarithmic to matrix size V x
K. This does not mean S;,,;; is small, for the constant C =
freq(1) can be very large; even C % In(V x K) can be huge.
But it basically means that an increase of dimension in the
model will not increase the model data size dramatically.

With the progress of iterations and algorithm convergence,
the model data size will shrink. The concentration parameters
« and B control the final sparsity of the topic distribution.
When a stationary state is reached, the average count value will
drop to a certain small constant ratio of K, with the constant
0 determined by the properties of the training data itself.

Stinai = mean(word — topiccount) * V =96« K «V  (6)

Model Data Partition After training data is partitioned to
each node of the cluster, a local model data S’ will be built up
and used in local computation. This local model data should
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Fig. 2. Model Size of (a) Zipf’s Law and (b) Vocabulary and Data Partition

synchronize with global model data S frequently to make
the training process converge. In fact, the synchronization
frequency is highly relevant to the final model accuracy.

This data partition strategy can decrease local training data
W’ linear to node number N. Therefore, we get W' = W/N.
For computations proportional to the total word number W',
this strategy is friendly to computation, and the more nodes we
have, the better performance we can expect. And, assuming
C’ = C/N, the actual local model size S}, ;, is:

Sl =C" % (InV' +InK — InC’ + 1)
%(an +InK —InC+1+InN)
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In general configurations [nN is smaller than (nV + InK —
InC + 1, so local model size S/,,;, is no more than 2 S;,;.
The initialized local model data size is controllable by data
partition.

But when model data synchronization begins, all words in
the local vocabulary need to fetch the corresponding global
model data. The local vocabulary size V' will then determine
both the communication data volume and local model size in
the burn-in phase, which becomes the problem.

It is clear that when documents are partitioned to N nodes,
every word with frequency larger than N will get a high prob-
ability occurring on each node. If at rank L, freq(L) = N,
we get: L = W On the “enwiki” dataset, W=1B,
V=IM, N=100, we get L = 0.69V; on the “clueweb” dataset,
W=10B, V=1M, N=100, L > V. For a reasonably large
training dataset, L should be easily larger than V', which means
it will send/receive and hold almost all the global model data
locally.

So, we conclude that because the power law distribution
of data exists, general data parallelism can help to distribute
training data among nodes and parallelize the computation
tasks accordingly, but it cannot effectively control the volume
of the model data movements among nodes. When dealing
with larger data and larger models, simply deploying more
nodes will not prove an effective solution, for model data
synchronization will eventually become a bottleneck.
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D. Experiments

We first validate Zipf’s law of word distribution on
“clueweb” and “enwiki” datasets, where the top 1M most

frequent words are selected(see Fig. 2a). They both show
considerable matching results, especially in the word region
with high frequency. In the preprocess step for LDA trainer,
stop words and low frequency words are often removed. This
makes the slope a bit more flat, and the actual model denser
than expected from equation(5). In Fig. 2b, we represent the
difficulty of controlling the vocabulary size by random parti-
tion of document collection. When 10 times more partitions
are introduced, there is only a sub-linear portion decrease of
the vocabulary size in each partition compared to the total
one; e.g. on the “clueweb” dataset, each partition gets 92.5%
vocabulary size when data is randomly distributed to 128
nodes. The “enwiki” dataset is about 12 times smaller than
“clueweb”, and it gets 90% at 8 nodes, keeping the similar
ratio. This figure shows the local models will not be the same
size of the global one, but also not much smaller.

III. SYNCHRONOUS COMMUNICATION METHODS

Past research has shown that collective communication op-
erations are indispensable in iteration-based machine learning
algorithms. Chu et al. [9] mentions that many machine learn-
ing algorithms can be implemented in MapReduce systems
[10]. The underlying principle of this conclusion is that each
iteration in the algorithm is dependent on the synchronization
of the local models computed on each worker at the last
iteration. However, MapReduce systems only provide a fixed
“shuffling” communication pattern. Thus, in Harp, a separate
collective communication abstraction layer provides a set of
data abstractions and related collective communication opera-
tion abstractions.

For LDA, both data parallelism and model parallelism
benefit from optimized synchronous communication methods.
In data parallelism, “one-to-all” communication patterns play a
crucial role in the synchronization to enable the optimization
of the communication performance with collective commu-
nication operations. In model parallelism, using collective
communication can maximize bandwidth usage between a
worker and its neighbors in shifting the model partitions.

A. The Abstraction Of Global/Local Data Synchronization

Considering the sparsity of the local model data distribution
on workers, the collective communication optimization, and
the existing collective communication abstractions in Harp, we
added two other data abstractions and related new collective
communication operations.

The two types of data abstractions are the global table
and the local table. The concept “table” has been defined
in previous Harp collective communication abstractions [2].
Each table may contain one or more partitions, and the tables
defined on different workers are associated in order to manage
a distributed dataset. In global tables, each partition has a
unique ID and represents a part of the whole distributed
dataset; but in local tables, partitions on different workers can
share the same partition ID. Each of these partitions sharing
the same ID is considered a local version of a partition in the
full distributed dataset.



We defined three communication operations on global tables
and local tables, with the first two being paired operations.
First, “syncGlobalWithLocal” uses the data in local tables
to synchronize the data in global tables. This operation will
reduce the partitions from local tables to the global table.
Secondly, “syncLocalWithGlobal” uses the data in global
tables to synchronize local tables. Based on the needs of
partitions in local tables, this operation will redistribute the
partitions in the global table to local tables. If one partition is
required by all the workers, it will be broadcasted.

Lastly, “rotateGlobal” will consider workers in a ring topol-
ogy and shift the partitions in the global table owned by
one worker to the right neighbor worker and then receive
the partitions from the left neighbor. When the operation is
completed, the contents of the distributed dataset in the global
tables won’t change, but each worker will hold a different set
of partitions. Since each worker only talks to its neighbors,
“rotateGlobal” can transmit global data in parallel without any
network conflicts.

B. The Applicability of Synchronous Communication Methods

“syncGlobalWithLocal” and “syncLocalWithGlobal” are
abstracted from data parallelism, and “rotateGlobal” is ab-
stracted from model parallelism. However, these operations
are not limited to the communication patterns in parallel LDA.
Instead, they can be applied to many other machine learning
algorithms with big model data.

A matrix can be drawn to describe each worker’s require-
ments on the global model data in the parallel computation
per iteration. In this matrix, each row represents a worker,
each column represents a global data partition, and each
element shows the requirements of the partition in the lo-
cal computation. Based on the density of this computation
relation matrix, we can choose proper operations in different
applications. If the matrix is dense, we suggest using the
“rotateGlobal” operation. Using k-means clustering as an
example, the global model data are the centroids, and the local
computation needs all the centroids data. Thus “rotateGlobal”
allows each worker to access all the centroids data effi-
ciently. If the matrix is sparse, using “syncGlobalWithLocal”
and “syncLocalWithGlobal” is a superior solution. For ex-
ample, in graph algorithms such as PageRank, the global
model data are the vertices’ page-rank values and counts of
out-edges. The local computation goes through each edge
and calculates the partial result of the new page-rank val-
ues. Then “syncGlobalWithLocal” can be used to update
global page-rank values. In the next iteration, we can use
“syncLocalWithGlobal” to fetch the new global page-rank
values to each local computation.

IV. HARP-LDA IMPLEMENTATION

A. Partition Training Data And Initialize Model Data

For the training data, we split the documents into files
evenly. For the model data, since words with high frequency
can dominate the computation and communication, we parti-
tion the global model based on the frequency of words in the
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training dataset. During the preprocessing of the training data,
each word is given an ID based on their frequency starting
from 0. The lower the occurrence of the word, the higher the
ID. Then we partition the words’ topic counts using range-
based partitioning. Assuming each partition contains m words,
Partition O contains words with IDs from 0 to m — 1, and
Partition 1 contains words with IDs from m to 2m — 1, and
so on. As a result, the partitions with low IDs contain the
words with the highest frequency. The initial global model
is generated by randomly assigning each token to a topic
and aggregated through “syncGlobalWithLocal”. The mapping
between partition IDs and worker IDs is calculated based on
the modulo operation. Assuming there is a worker with ID w
among a total of N workers, the partitions contained on this
worker are Partition w, Partition w+ N, Partition w + 2N, and
so on. In this way, each worker contains a number of words
whose frequencies rank from high to low.

B. Internode Parallelism

During iterations of the sampling, we use two different
approaches to update the global model which results in two im-
plementations (See Fig. 3). One implementation, named “Ida-
Igs”, follows data parallelism and uses “syncGlobalWithLocal”
paired with “syncLocalWithGlobal” operations. The other im-
plementation, named “Ida-rtt”, follows model parallelism and
uses “rotateGlobal” operation.

During the sampling of “lda-lgs”, each worker updates the
local model and tracks the difference generated in another
table. Once the sampling is done, “syncGlobalWithLocal”
operation is used to update the global model with the changes
of the local model. “syncLocalWithGlobal” operation is then
used to download new local model data from the updated
global table. At the end of the iteration, the sum of word
counts for each topic is calculated with “allreduce” operation
[11].

In “Ida-rtt”, each worker will first conduct sampling with
the global model partitions owned by itself and update them



directly. Then it will call “rotateGlobal” operation to send the
updated model data to the right neighbor and receive model
partitions from the left neighbor. Once all partitions of the
global model are received and processed, the sampling of
one iteration is completed. Similar to “lda-lgs”, “allreduce”
operation is used at the end of the iteration to update the
global sum of word counts on all topics.

C. Overlap Communication with Computation

Synchronous communication methods are often criticized
for generating much overhead and making all workers wait
for the completion of synchronization. We approached this
problem in three steps. The first step is to balance the
communication load on each worker through partitioning the
global model based on word frequencies. The second step is to
improve the speed with optimized collective communication.
Here we discuss the third step, which is overlapping compu-
tation and communication in execution.

In “Ida-rtt”, we slice the global model partitions held on
each worker into two sets. Slicing is conducted by first sorting
the partition IDs in ascending order and then assigning the
partitions to the two slices in alternate order. As a result, each
slice will contain words with both high and low frequencies.
We can view the whole process as splitting one global data
table distributed across workers into two global data tables.
During the sampling, when a worker finishes processing the
first slice, it uses another thread to rotate this slice. At the
same time, it continues processing the second slice. Once the
second slice is processed, the first slice has been rotated and
is ready for further processing. When both slices have finished
one round of rotation, the sampling of one iteration is over. The
overlapping between computation and communication occurs
when the worker processes one slice and rotates another slice
at the same time.

In “lda-1gs”, we split the local data table into two slices.
During the sampling, when each worker samples one slice, it
asks another thread to synchronize the other slice through the
paired “syncLocalWithGlobal” and “syncGlobalWithLocal”
operations. We map partitions based on their IDs into slices
so that local partitions with the same ID are guaranteed to be
synchronized in iterations.

D. Innernode Parallelism

In Harp-LDA, we use the “Computation” component pro-
vided by Harp to manage the multi-threading sampling within
one worker. The sampling process follows a SparseLDA algo-
rithm and can be performed in varying order. One approach
is to go through each document and sample every token.
Another is to go through each word and sample its occurrences
in each document. To keep the sampling order consistent
between implementations and remain fair in later performance
comparisons in the experiments, we sample by documents in
“lda-1gs” as Yahoo! LDA and sample by words in “lda-rtt” as
Petuum LDA. Notice that when sampling by words, we also
balance the computation load per thread by assigning words
based on their frequencies.

The local model is shared between threads. When sampling
by documents, the word-topic model is required to access with
locks. Symmetrically, when sampling by words, the document-
topic model is required to access with locks. We provide a read
lock and a write lock on each document/word’s topic count
map. Before sampling a token, all its document/word topic
counts are read out, and after sampling the updates are written
back. If the next token for sampling is the same word, the
sampling thread will keep using the thread local cached topic
counts to avoid repeating fetching the shared data. During the
update, we separate “updating an existing topic entry” and
“adding a count to a new topic entry”. In “updating an existing
topic entry”, because the map structure is not altered during
updating and reading a primitive integer is an atomic operation
in modern x86 architecture, it is safe to execute “read” and
“update” concurrently with a shared read lock. But in order
to ensure the correctness of the topic count values, “update”
operations are still required to be exclusive from each other. In
the operation of “adding a count to a new topic entry”, since
the map structure is modified, we have to use a write lock.

Though the concurrency is greatly improved, our current
implementation is still slower compared with Yahoo! LDA
and Petuum in the first iteration of sampling. This could
be caused by the difference on the implementation language
(Java/C++) and the performance of the data structure (primi-
tive int based hashmap [12]/primitive int array). As many-core
architecture is becoming more common, high performance
concurrent sampling with many-threads is a challenge to all
the implementations. However, in this paper our aim is not
to provide the fastest LDA implementation but to show the
advantages of using synchronous communication methods in
converging LDA model compared with asynchronous commu-
nication methods.

V. EXPERIMENTS

A. Experiment Settings

The tests are done on Juliet cluster [13]. Juliet cluster
contains 32 18-core 72-thread nodes and 96 24-core 48-thread
nodes. All the nodes have 128GB memory and are connected
with two types of networks: 1Gbps Ethernet (eth) and 16 Gbps
Infiniband (ib). For testing, we use 31 18-core nodes and 69
24-core nodes to form a cluster of 100 nodes with 40 threads
on each for computation. Most tests are done with Infiniband
through IPoIB support unless otherwise specified.

Several datasets are used (see Table I). The total number of
model parameters is kept as 10 billion on all the datasets. «
and 3 are both fixed at 0.01.

We test several implementations on these datasets (see Table
II). We compare synchronous communication methods with
asynchronous communication methods on both the model par-
allelism and the data parallelism. By studying the convergence
speed and the execution time, we learn how the difference in
communication methods affects the performance of LDA.



TABLE I
TRAINING DATA SETTINGS USED IN THE EXPERIMENTS

Dataset enwiki clueweb | bi-gram gutenberg
Num. of Docs 3.8M 50.5M 3.9M 26.2K
Num. of Tokens 1.1B 12.4B 1.7B 836.8M
Vocabulary M M 20M M
Doc Len.

AVG/STD 293/523 | 224/352 | 434/776 | 31879/42147
Lowest Word 7 85 6 2
Freq.

Num. of Topics 10K 10K 500 10K
Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB

Note: Both “enwiki” and “bi-gram” are English articles from
Wikipedia. “clueweb” is 10% English web pages from ClueWeb09
[14]. And “gutenberg”are English books from Project GutenBurg [15].

TABLE 11
LDA IMPLEMENTATIONS USED IN THE EXPERIMENTS

Data Parallelism
This refers to “lda-lgs” implementation. This version
lgs uses SparseLDA algorithm and sample by documents
but no routing optimization.
This version is similar to “lgs” and uses routing
optimization.
This version is similar to “Igs-opt” but the training
data on each worker is divided into 4 slices. During
each iteration, when sampling a slice, a full model
synchronization is performed.
This refers to the master branch on GitHub [3]. It
uses SparseLDA algorithm and samples by docu-
ments.

1gs-opt

Igs-opt-4s

Yahoo! LDA

Model Parallelism
This refers to “Ida-rtt” implementation. This version
uses SparseLDA algorithm and samples by words.
This refers to version 1.1 [4]. It uses SparseLDA
algorithm and samples by words.

rtt

Petuum

B. Convergence Speed Per Iteration

Firstly we compare the convergence speed of the LDA
word-topic model on iterations by analyzing model results
learned on Iteration 1, 10, 20, 30... 200. Because all the
training data are sampled once in one iteration, it is fair to
measure the performance of the model convergence without
considering the performance difference in computation.

On the “clueweb” dataset (see Fig. 4a), Petuum has the
highest model likelihood on all the iterations. Though “rtt”
also uses the model parallelism, due to its preference of using
the thread-local data and not the up-to-date local shared model,
the convergence speed is slower. “rtt” and “lgs-opt” have
similar convergence speeds and their lines in the chart are
close to overlapping. This is different from “lgs-opt”, where
the convergence speed of “lgs-opt-4s” is as high as Petuum.
This shows that increasing the times of model synchronization
helps the convergence speed. Yahoo! LDA has the slowest con-
vergence speed because its asynchronous communication does
not guarantee a full model synchronization in one iteration.

On the “enwiki” dataset (see Fig. 4b), as before, Petuum
has the highest accuracy out of all iterations. “rtt” converges
to the same model likelihood level as Petuum at Iteration
200. “lgs-opt” has slower convergence speed but still achieved
high model likelihood, while with Yahoo! LDA both have

— lgsopt

Model Likelihood
Model Likelihood

Yahoo!LDA ({

— it

Igs-opt
== Yahoo!LDA

Petuum
o lgs-optds | +— Petuum

L L T 13 L L
0 50 100 150 200 0 50 100 150 200

Iteration Number Iteration Number

(@ (b)
Fig. 4. Model Convergence of (a) “clueweb” And (b) “enwiki” On Iterations

— nt

the slowest convergence speed and achieve the lowest model
likelihood at Iteration 200.

All these results show that when model update rate is in-
creased (either using the model parallelism or using multiple-
time model synchronization in the data parallelism), the model
converges faster.

C. Performance Analysis on Data Parallelism

We compare the model convergence speed on “lgs” and
Yahoo! LDA by injecting the real execution time on iterations.
On the “clueweb” dataset, we first show the convergence speed
based on the elapsed execution time (see Fig. 5a). Yahoo! LDA
need more time to obtain the model result of Iteration 1 due
to its slown model initialization. Since model initialization is
mainly communication rather than computation and it cannot
be overlapped with sampling, this shows Yahoo! LDA has
huge overhead on the communication end. In later iterations,
though “Igs” converges faster, Yahoo! LDA catches up after
30 iterations. The reason is that our computation is slow and
we only allow one model synchronization per iteration, while
Yahoo! LDA does not have this restriction and allow multiple
instances of synchronization whenever possible. Because the
computation is quite long and the network is idle most of the
time, we can increase the time of model synchronization per
iteration by dividing the training documents on each worker
into multiple slices and synchronizing the model data when
sampling each slice. “Igs-opt-4s” shows that although the
execution time on 200 iterations is still slightly longer than
Yahoo! LDA, it can obtain higher model likelihood and keep
faster convergence speed in the whole execution.

Due to the slowness in the local computation, our implemen-
tations show much higher iteration execution time at the first
iteration compared with Yahoo! LDA (see Fig. 5b). But with
optimized synchronous communication methods, we quickly
reduce the difference and could even run faster than Yahoo!
LDA on some iterations. Similar results are also shown on
the “enwiki” dataset. “Igs-opt”not only achieves higher model
likelihood but also has faster model convergence speed in the
while execution (see Fig. 5d). Though our execution time at
Iteration 1 is twice as slow as Yahoo! LDA, later it takes less
execution time per iteration than Yahoo! LDA (see Fig. 5e). It
is caught up with Yahoo! LDA only when the models in both
applications converge to a similar likelihood level.
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In addition, we examine the effectiveness of using routing
optimization in our “lgs” solution. Fig. 5c shows the results of
200 iteration executions on “clueweb” and Fig. 5f shows the
results on “enwiki”. On Ethernet, “lgs-opt” is obviously faster
than “Igs”. But with Infiniband, due to its high bandwidth, the
performance is very close to one another.

D. Performance Analysis on Model Parallelism

Here we compare “rtt” and Petuum on 3 different datasets:
“clueweb”, “bi-gram” and “gutenburg”. Because both these
implementations use model parallelism, the performance dif-
ference is caused by the execution speed per iteration.

On the “clueweb” dataset, both implementations achieve
similar model likelihood with similar execution times after 200
iterations (see Fig. 6a). But the first 10 iterations still show that
“rtt” has high computation time compared with Petuum (see
Fig. 6b). However its overhead on communication per iteration
becomes lower than Petuum. When the execution arrives at
the final 10 iterations, while the computation overhead per
iteration in “rtt” is still higher, the whole execution time per
iteration becomes lower (see Fig. 6¢). The trend of this change
is shown in Fig 6d.

Unlike our “rotateGlobal” operation which batches trans-
mission of model data partitions, Petuum sends model data
word by word asynchronously. This could cause high com-
munication overhead. On a “bi-gram” dataset, the results
show that when the number of words in the model gets
high, Petuum cannot perform well. Due to the high overhead
in communication, the convergence speed is very slow and
Petuum cannot even continue executing after 60 iterations
due to an out of memory error (see Fig. 6e). Due to the
communication overhead, Fig. 6f and Fig. 6g show that in the
first/final 10 iterations, Petuum always has higher execution

time per iteration compared with “rtt”. The trend of this
phenomenon is shown in Fig. 6h.

Though the data size of “gutenburg” is similar to “enwiki”,
it is clear that there is a difference in execution speed per
iteration (see Fig. 6i). High standard deviation indicates that
the iteration execution time per worker varies a lot. Not like
the results on “bi-gram” where Petuum’s performance suffers
from the communication overhead, here it suffers from waiting
for the slowest worker. The reason is that “gutenburg” contains
many long documents and results in unbalanced training data
distribution on the workers. Besides, when sampling by words,
frequent access to the shared huge doc-topic model leads to
inefficient concurrent sampling. However, “rtt” is not much
affected because it prefers using thread-local data in concur-
rent sampling and balances per-thread computation through
assigning words to threads based on the frequencies. Fig. 6,
Fig. 6k, and Fig. 61 display that the unbalanced computation
in Petuum results in high overhead per iteration. Since in
model parallelism, model rotation is a synchronous operation,
this experiment demonstrates that unbalanced computation on
workers causes huge overhead in global waiting and results
in high iteration execution time. As a result, when applying
synchronous communication methods, computation load bal-
ancing should be carefully considered.

VI. RELATED WORK

Prior research has studied the parallelization of the LDA
algorithm extensively. Some studies focused on using the
Collapsed Variational Bayes (CVB) algorithm [1]. Mahout
LDA [16] and Spark LDA [17] both use this algorithm.
However, research also shows that this approach leads to high
memory consumption and slow convergence speed [6][18].
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Other studies use the CGS algorithm (see Table III). PLDA
[19] is such an implementation. There are two versions of
PLDA, one based on MPI [20] using the “allreduce” operation
[11], and the other based on on MapReduce[10][21] using

TABLE III

LDA WORK USING CGS ALGORITHM

“shuffle” operation App. Name Algorithm Parallelism Comm.
P ' : : PLDA CGS le by d D. P allreduce
Yahoo! LDA [22][23] uses the CGS algorithm with (sample by docs) i (sync)
SparseLDA optimization, and its architecture is client-server Dato CGS (sample by doc- | 5 p GAS
with asynchronous communication. Local models are dis- word edge) S?;?
tributed in the star model, and local computation threads use Yahoo! LDA Sca?ns le(ipaassc];]))A &\ pp server
optimized locking mechanisms when accessing the shared lo- pe by foet (async)
cal model. The synchronization between local models and the Peacock CGS (SparseLDA & | D.P.(M.P.in z:g:r
global model is done through asynchronous delta aggregation. sample by words) local) (asyno)
Dato [24] uses the GAS model [25] to implement the Parameter CGS (combined with | | o iﬁfgr
LDA algorithm [26]. Currently, it uses a CGS algorithm Server other methods) o (async)
without SparseLDA optimization. GAS model’s edge-based CGS (SpaeLDA & client-
computation patterns cause the training data to be partitioned Petuum 0.93 sample( bl;agifcs) D.P server
based on document-word pairs instead of the documents. As S;gzzr
a result, during the sampling process, both the topic counts of Petuum 1.1 | COS (SparseLDA & | M. P (include | °"
. ctuum 1. sample by words) D. P) opotogy
words and documents have to be gathered and updated. This (async)

results in additional communication costs in synchronization.
Peacock [18] uses a hierarchical distributed architecture
to organize the LDA computation. The first layer uses the

Note: “D. P refers to Data Parallelism. “M. P refers to Model

Parallelism.




SparseLDA algorithm with a lock-free parallel strategy to
exploit local model parallelism. The design of this layer is
similar to “rotateGlobal” but differs by sending documents to
where the model locates rather than rotating model partitions
between documents. The second layer also uses client-server
architecture with asynchronous communication.

Parameter Server [27] and Petuum [28] both provide a
framework to allow programming machine learning algorithms
in client-server architecture with “push” and “pull” operations.
Parameter Server puts the global model on servers and uses
range-based “push” and “pull” operations for synchronization.
These operations allow workers to update a row or a segment
of parameters directly and provides a chance to batch the com-
munication of model updates. The computation of Parameter
Server’s LDA implementation uses a combination of stochastic
variational methods, collapsed Gibbs sampling, and distributed
gradient descent. Another operation of Petuum, “schedule”,
allows model parallelism through scheduling model partitions
to workers. Lee et al. [29] describes that the communication to
fetch model data goes between clients and servers, but in the
real code on GitHub [4], workers are actually directly sending
data to neighbors with optimized routing.

VII. CONCLUSION

Through experiments on several datasets, we showed that
synchronous communication methods perform better than
asynchronous methods on both data parallelism and model
parallelism. In data parallelism, our implementation with syn-
chronous communication methods resulted in faster model
convergence and higher model likelihood at the final iteration
compared to Yahoo! LDA using asynchronous communication
methods. In model parallelism, our implementation with syn-
chronous communication methods also showed significantly
lower overhead than Petuum LDA. Even though the computa-
tion speed of the first iteration is two- to threefold slower, the
total execution time of our method with the same number of
iterations was similar or even shorter compared with related
implementations. These results prove that with optimized
synchronous communication methods, we can increase the
model update rate, allowing the model to converge faster,
shrinking the model size, and further reducing the computation
time in later iterations.

In general, despite of the implementation differences in-
jected in performance comparison between “rtt”, “lgs”, Ya-
hoo! LDA, and Petuum LDA, the advantages of synchronous
communication methods are still obvious. Compared with
asynchronous communication methods, synchronous commu-
nication methods can optimize routing between a set of parallel
workers and maximize bandwidth utilization in point-to-point
communication. Though synchronous communication methods
could result in global/local waiting. However, because the
word frequencies in the LDA training data is under the power-
law distribution and a considerable amount of words have
high frequencies, balancing the computation on all the parallel
workers is feasible and the overhead of waiting is not as high
as speculated. The chain reaction set off by improving the LDA

model update speed amplifies the benefit of using synchronous
communication methods.

In future work, we will focus on improving concurrent
sampling speed on many-core systems to provide a high
performance LDA implementation and apply our new com-
munication abstractions to other machine learning algorithms
facing difficulties in handling big model data.
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